
A System Approach to Machinery Condition Monitoring and Diagnostic

 I. ABSTRACT

The purpose of this paper is to discuss an approach to integrate data collection and
analysis of ship machinery for the purpose of assessing equipment condition and
maintaining their operational performance.  The approach exploits the capability of
Distributed Control Systems (DCS) in a networked environment to support a system-
wide condition based maintenance (CBM) concept in a cost effective way.  The paper
first discusses the CBM concept in a distributed computing environment for shipboard
application.  It then proceeds to discuss the traditional roles of distributed control systems
for shipboard equipment and expounds on different features of the advanced DCS that
enable it to monitor and assess equipment condition on-line and continuously to
predict/prevent performance degradation.  Some of the new features that are integral to
the control system include advanced vibration analysis algorithms and system dynamics
identification techniques whose purpose is to assess the performance of the equipment
based on the measured dynamic response.  This monitoring and assessment capability
adds to the CBM suites of assessment and prognostics techniques, but at no additional
costs, since the DCS already handles the collecting and conditioning of the equipment
critical data.

 II. INTRODUCTION

Typical shipboard machinery includes turbines, engines, motors, expanders, pumps,
compressors, and generators plus various integral components (valves, piping, etc.) that
make up each individual system.  The basic notion of equipment maintenance is about
applying engineering principles toward the diagnosis and correction of machinery
malfunctions.   The development of CBM methodologies coupled with advanced
distributed computing technology have facilitated the utilization and implementation of
engineering principles and experience into a ship-wide automated maintenance strategy.
In modern machinery plants, the distributed process control system has taken over the
data collection and analysis tasks that have traditionally been performed in dedicated
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machinery monitoring systems.  The general trend is to incorporate monitoring functions
and assessment algorithms into the equipment control systems located throughout the
plant.  This approach tends to reduce data acquisition costs and  improve operating
efficiency  since the control systems already collect signals that are critical for diagnosing
and predicting machinery condition and performance.

Distributed control systems for individual equipment play a critical role in the
intermediate step of data collection, conditioning, and analysis within the automated
CBM infrastructure.  Advanced process control systems include analysis algorithms that
enable them to diagnose and report malfunctions to the CBM  system which  ultimately
supports  system-wide asset management.   Figure 1 depicts the distributed architecture
applicable to ship machinery condition diagnostics and prognostics.  A typical distributed
control system operates at the component or equipment level where data from equipment
sensors are collected, conditioned, and analyzed for machinery behavior.  Depending on
the maintenance philosophy and on  the interaction among ship equipment, further
diagnosis and prognostics may take place at higher level in the architecture, i.e. zonal,
system,  or ship-wide.

 



Figure 1:  Ship Equipment Maintenance Hierarchical Architecture
 III. Condition Based Maintenance (CBM) Concept

Condition Based Maintenance (CBM) functionality can be viewed as a tightly integrated
suite of software applications operating throughout the ship distributed computing
infrastructure.  It integrates sensors, algorithms, and software, and  supports automation
of the distributed control system operation in three ways:

1) Condition Assessment:  Assesses the condition of the equipment automatically
to reduce human inspection tasks and unnecessary maintenance that occurs in a
traditional periodic maintenance scheme.  System assessment also provides
valuable real-time decision support data for operational planning.

2) Prognostics:  Predicts the onset of machinery failure to allow the command
structure to match the use of the ship’s machinery to the mission plan, or to
enhance maintenance support.  Prognostic capability expands support options and
allows for cost effective planning and management.

3) Automated Logistics:  Allows advanced scheduling and coordination of
maintenance actions. Advanced triggering of logistics support events improves
system availability and resource utilization.

Condition Assessment has two corollary functions:

1) To continuously monitor and estimate machine condition as the machine degrades
with use and eventually degrades beyond designed engineering limits.

2) To identify unreliable or failed machine elements.

The ultimate CBM objective is to determine the overall health of the system and to
provide a  comprehensive assessment of diagnostic condition (hard failures), and
prognostic condition (pending failures).  Moreover, the CBM functionality supports the
management of the system configuration as well as providing a capability to exercise the
test/maintenance features of the subsystems.   In order to identify both pending and actual
failures, the CBM applications process the prognostics captured by the distributed control
systems.   The CBM applications compute performance indices such as “performance
degradation” or “damage accumulation” based on known component analysis
models/algorithms available for the plant equipment.  It then compares the computed
performance index to a mapping of “health phases” to determine if the component has
transitioned to a different state of health or degradation.  Depending upon the component
and its health phase, an appropriate automated  “action alert” (such as an indication to



order a replacement part) may be triggered to facilitate resolution of this prognostic
evaluation.

CBM Data Flow

It is envisioned that the CBM applications continuously monitor the ship equipment by
analyzing data from CBM-specific sensors and data from the equipment control systems.
Figure 2 illustrates the conceptual flow of data and the CBM analysis process.  The
process starts with sensor data collection at the process control level.  The data is

Figure 2:  CBM Data Flows across the Ship Network Infrastructure

subsequently delivered to the CBM condition assessment algorithm for a particular
machinery element.  The condition assessment algorithm determines the condition of this
element using a combination of engineering models that represent the process the element
performs.  This information is used as input for optimizing the ship’s operation by
determining which machines to operate.  The prognostic algorithms use the condition
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assessment information to update or otherwise estimate the operating time available
before a failure occurs.  The prognostic information is then made available to the
operators for further action.  The ship’s crew can then use the current and projected status
to evaluate and update mission plans including maintenance activities.

CBM Technologies

Condition Assessment Technique :  Many condition assessment software packages are
available from commercial sources.  Some of the assessment and prognostic algorithm
tools have also been tested in both a naval and a commercial process environment. The
DEI Group/IDAX has developed several tools that provide condition assessment and
prognostics capabilities fielded in both commercial and Navy applications.  Their
Integrated Condition Assessment System (ICAS) is installed on many Navy ships
providing propulsion/electric plant condition assessment and troubleshooting support for
the ship’s engineering crew.   Other companies and institutions such as VibroTek,
SwanTech, NRL, and General Electric provide tools that add condition assessment
capabilities.

Condition assessment tools provide both Boolean logic and “fuzzy logic” heuristic
algorithms.  These algorithms combine the observed symptoms into machinery
assessment rules for each failure mode of a machine.  The observed symptoms reflect the
machine state and its physical process.   In this scenario, sensors measure the dynamic
states in the physical process and the rules determine the change of that state based on the
matching of symptomatic parameters in the assessment rule.  The assessment rule
represents the condition of the machine whenever it is found and triggered.

The analysis engine is composed of calculation component, trend evaluator and an expert
heuristic engine based on crisp and fuzzy Boolean logic.  Each diagnostic “fault”  (or
pattern) is directly associated with a sub-component of the system and targets a particular
failure mode for early-detection.  Each failure mode will contain a “pattern” comprised of
symptoms for the condition assessment system to use as the expert evaluator.  Each
symptom is directly related to calculations or trend slopes that are dependent on physical
sensor scanned values.

Prognostics Technique :  The premise supporting prognostics:  If failure modes are
identified through patterns, then rate-of-change over time (in machine operating hours) of
the pattern defines the failure mode’s evolution rate and character.  When the evolution



rate and character has been determined, then the residual operating time for the failure
mode is extrapolated using the known character of the wear.  The amount of certainty in
the estimation, or the accuracy of the estimation, is dependent on the following:

1) The accuracy of the baseline model used to define the failure mode

2) The accuracy of sensor processing including the sensitivity of the sensor, the
accuracy in the data collection process, and its stability over time

4) The actual number of measured machine parameters and whether these machine
parameters fully sense the conditions affecting wear of the machine

5) The accuracy of associations, or wear models, linking measured machine
parameters to the degradation process.

 IV. Machinery Condition Monitoring

The fundamental concept behind condition based maintenance consists of evaluating the
system machinery from many aspects and assessing its electrical and mechanical
condition.  Vibration response and dynamic performance characteristics are the two
major indications of machinery condition.  The DCS typically provides  continuous
monitoring of these two characteristics and in some cases periodic samples having greater
detail/resolution.  For example, machinery performance is constantly monitored with
normal operating instruments.  However, specific performance tests may be periodically
conducted to compute operating points and the efficiency of individual machinery cases.
The frequency of the performance tests is a function of the machinery services.  Similarly
the vibratory behavior of the equipment is continually monitored and protected by the
control system.  Other types of information such as lube oil analysis, winding insulation
resistance analysis, thermography, and current analysis on electric machinery might be
incorporated into the equipment condition monitoring program.

The majority of machinery mechanical  problems occur in three categories: alignment,
balance, and incorrect clearances.  These problems symptoms can generally be diagnosed
using sensed data such as temperature, pressure, vibration and dynamic response.  For
example, data such as vibration, temperature and lubricant condition indicate some
malfunctions within the machine under question that tend to show up as poor dynamic
performance.

Distributed Control System (DCS) Characteristics

In addition to having the usual control logic, modern DCS’s have the following features



• High-speed data collection and signal conditioning:  Many signal input/output
modules within the DCS have on-board processors that independently handle
the numerical calculations.

• Vibration analysis algorithms:  Vibration signal analysis that makes use of
different computational strategies such as Fast Fourier Transform (FFT),
Neural Nets (NN), and Wavelet.

• Dynamics identification algorithms:  These are methods to estimate the on-
line dynamic operational parameters of the equipment.

These features are available in many commercial DCS and also in some smart sensors
and actuators.

The implementation of the analysis techniques in the DCS  is similar to the CBM
methodology aforementioned.  The methodology is based on having a reference (known)
model of the equipment characteristics and operation.  The DCS continually measures
and compares actual equipment data/performance to the expected output of the model.  It
assesses the equipment condition by analyzing the deviation of the expected results.

Vibration Response Monitoring

It has been known for many years that the mechanical integrity of a machine can be
evaluated by detailed analysis of the vibratory motion4.    Many mechanical problems are
initially recognized by a change in machinery vibration amplitudes.  In addition, the
frequency of vibration, plus the location and direction of the vibratory motion are
indicators of problem type and severity.   Vibration characteristics can be distinctively
divided into two types:  forced vibration and free vibration.  Typical forced vibration
relates to problems such as mass unbalance, misalignment, and excitation of electrical or
mechanical nature.  Free vibration is a self-excited phenomenon that is dependent on the
geometry, mass, and damping of the system, and typically caused by structural, acoustic
resonance, and by aerodynamic or hydrodynamic excitation.

Vibration signals carry information about exciting forces and the structural path through
which they propagate to vibration transducers.  A machine generates vibrations of
specific ‘color’ when in a healthy state and the degradation of a component within it my
result in a change in the character of the  vibration signals.18  The overall vibration signal
is a mixture of a host of components at different frequencies.  These frequencies are
primarily a function of the dimensions of the machine elements and their operating
speeds, and the structural path along which the vibration signals propagate.  A large
variety of machinery possesses intrinsic dynamic characteristics that can provide a



signature indicating their state of health.  The state of health for the most part can be
measured and analyzed in terms of the vibration signals.

Advanced distributed control systems include digital processing techniques to analyze the
equipment vibration signals in both time-domain and frequency-domain.  Time domain
information is useful to detect short duration features and frequency domain data is
necessary for tracking multiple frequency components that shift in time.  The
implementation of the signal processing algorithms can be done using different
computation techniques.  These techniques include but are not limited to Fast Fourier
Transform (FFT), Neural Network, and Wavelet analyses which have been applied to
vibration monitor and detection in gas turbine control systems.8    Figure 3  illustrates the
process of analyzing a time-based vibration signal data using Fourier technique.  The
result is a frequency spectrum which  indicates the magnitude of the vibration at discrete
frequency ranges.   The control system can then utilize this information to determine if
there has been a change in machinery characteristics and whether the change is
acceptable for continued operation.
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Figure 3:  Fourier Analysis of Vibration Data

Dynamic Performance Monitoring



The dynamic response of the equipment  is a good measure of its operational
performance.  Dynamic behavior of a system can usually be measured in two ways: step
response and frequency response.  To measure the step response, for example, the control
system generates an excitation signal (step) to a selected piece of equipment.  The
appropriate equipment parameters are then measured and stored for a predetermined time
frame.  The analysis step involves contructing the time response of the parameters and
comparing them it against a known response of the system.   The known response may be
derived from mathematical models of the equipment in combination with engineering
experience.

Figure 4 illustrates a step response analysis where the equipment is perturbed by a step
input signal generated by the control system.  The  output of the system is measured and
compared with that of a predefined  model for the same input signal.  Variations between
the actual and the model (expected) output are analyzed to determine the possible
performance degradation.  For frequency response analysis, a similar process to the step
response is performed, but now the input excitation signal is a sinusoidal signal having
different frequency components.  The system performance is  then analyzed in terms of
the frequency spectrum.
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Figure 4:  Condition Assessment Based on Step Response



This has been a brief discussion of the dynamic performance monitoring and analysis,
also known as system identification techniques.  The actual design and implementation of
these techniques are relatively complicated in terms of formulating proper excitation
level and frequency.  The signal input amplitude and frequency are normally designed to
match the frequency bandwidth of the selected equipment so that maximum information
can be extracted out of the response data.   These techniques are normally used to obtain
the dynamic response of the equipment in order to design  control system parameters.
However, it can also be used effectively in assessing the deterioration of equipment
performance due to mechanical or electrical problems in system or components.

 V. Applications

The techniques of vibration and dynamic performance analysis described in the preceding
section have been implemented in control systems for different applications.  Other
techniques and applications are being developed to improve system performance and
reliability to support total CBM concept.   All  of these methods can be easily
incorporated in a Distributed Control System and some of them are presented below.

Gas Turbine Condition Monitoring

There has been significant development in the area of gas turbine condition monitoring
products.  Some notable effort is by General Electric and Lockheed Martin Corporations
who use control system information to perform gas-turbine condition monitoring.
Intelligent Applications Ltd. developed  Tiger, a gas turbine condition monitoring system,
that has proven to reduce maintenance cost and improve operational performance.16  This
system utilizes turbine control system information to perform conditioning monitoring
and analysis.  During on-line operation, Tiger performs a variety of checks, including
design limits, dynamic response and, consistency with model-based prediction.

Condition-Based Maintenance of Electrical Machines

Various efforts in industry have focused on the on-line monitoring of electrical
equipment such as electrical motors and transformers.  In many of these instances, local
control systems collect data using advanced sensor technology and analyze them for
equipment malfunction.  This is primarily a part of the predictive maintenance
development to detect electrical deterioration of equipment insulation system.   For some
components such as an electrical transformer, the condition of winding insulation has a



major effect on long–duration outage10.  The objective is to improve personnel safety and
the application of on-line monitoring for incipient failures.

Many manufacturers provide motor controllers integrated with motors for variable speed
motor operation.  The integrated motor provides a compact package for distributed
control enabling the machine to continuously monitor its own health.    The built-in
algorithmic techniques establish whether the motor’s operating parameters such as
vibration, current and temperature are within prescribed limits.

 VI. Conclusion

Distributed control system suppliers are continually working to provide more predictive
maintenance (condition monitoring) features and to help the system users put a host of
other information from the automation environment to good use.  The advent of smart
sensors and actuators capable of communicating through system networks make use of a
tremendous amount of available reliability data for CBM utilization.  As computing
power becomes less expensive and can be economically distributed to the equipment
level control systems, more analysis can be executed in parallel with the process control
routines.  The overall goal is to analyze the change in the equipment condition, predict
potential failures, and proactively implement (through a CBM infrastructure)
maintenance.  Cost of CBM implementation can potentially be reduced by distributing
the CBM functions to lower level equipment DCS.

As the process control systems take on additional responsibilities in the areas of condition
assessment, it will be necessary to develop better and more robust computational
techniques to improve the efficiency and accuracy of data processing.  Development in
areas such as sensor data fusion, feature extraction, classification, and prediction
algorithms are essential to determine the remaining useful life of a piece of machinery.

 VII. References

1. Barkova, Natalia A., “The Current State of Vibroacoustical Machine Diagnosis”,
VibroAcoustical Systems and Technologies (VAST, Inc.), St. Petersburg, Russia.

2. Coleman, Neil and Coleman, R.E., “Dynamic Defect Detection”, Sensor Magazine,
August 1999, pp. 14-24.

3. Discenzo, Fred M., et. al, “Self-Diagnosing Intelligent Motors: A Key Enabler for
Next Generation Manufacturing Systems”, IEE Publication, London UK.

4. Eisenmann, Robert C. Sr., Eisenmann, Robert C. Jr., Machinery Malfunction
Diagnosis and Correction, Prentice Hall, 1998.

5. Engel, Stephan J., et al., “Prognostics, The Real Issues Involved with Predicting Life
Remaining”, IEEE Publication 0-7803-5846-5/00, 2000, pp. 457-469.

6. Gonzalez, A. J., et al., Monitoring and Diagnosis of Turbine-Driven Generators,
Electric Power Research Institute (EPRI), Published by Prentice Hall, 1995.



7. Hadden, George D., et al., “Shipboard Machinery Diagnostic and
Prognostics/Condition Based Maintenance: A Progress Report”, IEEE Publication 0-
7803-5846-5/00, 2000, pp.277-292.

8. Harrison, Gregory A., Lockheed Martin Information Systems, Orlando Florida,
personal communication.

9. Hess, Stephan M., et al., “An Evaluation Method for Application of Condition-Based
Maintenance Technologies”, 2001 Proceedings Annual Reliability and
Maintainability Symposium”, pp. 240-245.

10. Kohler, J.L., et. al., “Condition-Based maintenance of Electrical Machines”, IEEE
Publication 0-7803-5589-X/99, 1999, pp. 205-211.

11. Nguyen, T.V., Lockheed Martin Information Systems, Orlando Florida.
12. Reichard, Karl M., et al., “Application of Sensor Fusion and Signal Classification

Techniques in a Distributed machinery Condition Monitoring System”, Sensor
Fusion: Architectures, Algorithms, and Applications IV, Proceedings of SPIE, Vol.
4051, 2000, pp. 329-336.

13. Schulz, Glenn, “Integrating Information to Achieve Plant-wide Asset Health”,
Control Solutions magazine, March 2001, pp. 36-40.

14. Starr, A.G., “A Structured Approach to the Selection of Condition Based
Maintenance”, 5th International Conference on FACTORY 2000, April 2-4 1997,
Conference Publication No. 435, IEE 1997, pp. 131-138.

15. Tenbohlen  S., “Monitoring of Power Transformers through Field Bus and Process
Control Engineering”.

16. Travé-Massuyè, Louise, Milne, Robert, ”Gas-Turbine Condition Monitoring Using
Qualitative Model-Based Diagnosis”, IEEE Expert, May-June 1997, pp. 22-31.

17. Werzer, J.M., et. al., “Diagnostic and Condition Assessment Techniques for
Condition Based Maintenance”, 2000 Conference on Electrical Insulation and
Dielectric Phenomena, pp. 47-51.

18. Williams, J.H., et al., Condition-Based Maintenance and Machine Diagnostics,
Chapman & Hall, 1994.


